前几天 Eran Yanay 在 Gophercon Israel 分享了一个讲座:Going Infinite, handling 1M websockets connections in Go, 介绍了使用Go实现支持百万连接的websocket服务器,引起了很大的反响。事实上,相关的技术在2017年的一篇技术中已经介绍: A Million WebSockets and Go, 这篇2017年文章的作者Sergey Kamardin也就是 Eran Yanay 项目中使用的ws库的作者。
Sergey Kamardin 在 A Million WebSockets and Go 一文中介绍了epoll的使用(mailru/easygo,支持epoll on linux, kqueue onbsd, darwin), ws的zero copy的upgrade等技术。
Eran Yanay的分享中对epoll的处理做了简化,而且提供了docker测试的脚本,很方便的在单机上进行百万连接的测试。
2015年的时候我也曾作为百万连接的websocket的服务器的比较:使用四种框架分别实现百万websocket常连接的服务器 、七种WebSocket框架的性能比较。应该说,只要服务器硬件资源足够(内存和CPU), 实现百万连接的服务器并不是很难的事情。
操作系统会为每一个连接分配一定的内存空间外(主要是内部网络数据结构sk_buff的大小、连接的读写缓存,sof),虽然这些可以进行调优,但是如果想使用正常的操作系统的TCP/IP栈的话,这些是硬性的需求。刨去这些,不同的编程语言不同的框架的设计,甚至是不同的需求场景,都会极大的影响TCP服务器内存的占用和处理。
一般Go语言的TCP(和HTTP)的处理都是每一个连接启动一个goroutine去处理,因为我们被教导goroutine的不像thread, 它是很便宜的,可以在服务器上启动成千上万的goroutine。但是对于一百万的连接,这种goroutine-per-connection的模式就至少要启动一百万个goroutine,这对资源的消耗也是极大的。针对不同的操作系统和不同的Go版本,一个goroutine锁使用的最小的栈大小是2KB ~ 8 KB (go stack),如果在每个goroutine中在分配byte buffer用以从连接中读写数据,几十G的内存轻轻松松就分配出去了。
...
服务器epoll代码实现:
- server.go
var epoller *epoll
func main() {
setLimit()
ln, err := net.Listen("tcp", ":8972")
if err != nil {
panic(err)
}
go func() {
if err := http.ListenAndServe(":6060", nil); err != nil {
log.Fatalf("pprof failed: %v", err)
}
}()
epoller, err = MkEpoll()
if err != nil {
panic(err)
}
go start()
for {
conn, e := ln.Accept()
if e != nil {
if ne, ok := e.(net.Error); ok && ne.Temporary() {
log.Printf("accept temp err: %v", ne)
continue
}
log.Printf("accept err: %v", e)
return
}
if err := epoller.Add(conn); err != nil {
log.Printf("failed to add connection %v", err)
conn.Close()
}
}
}
func start() {
var buf = make([]byte, 8)
for {
connections, err := epoller.Wait()
if err != nil {
log.Printf("failed to epoll wait %v", err)
continue
}
for _, conn := range connections {
if conn == nil {
break
}
if _, err := conn.Read(buf); err != nil {
if err := epoller.Remove(conn); err != nil {
log.Printf("failed to remove %v", err)
}
conn.Close()
}
}
}
}
- epoll实现
type epoll struct {
fd int
connections map[int]net.Conn
lock *sync.RWMutex
}
func MkEpoll() (*epoll, error) {
fd, err := unix.EpollCreate1(0)
if err != nil {
return nil, err
}
return &epoll{
fd: fd,
lock: &sync.RWMutex{},
connections: make(map[int]net.Conn),
}, nil
}
func (e *epoll) Add(conn net.Conn) error {
// Extract file descriptor associated with the connection
fd := socketFD(conn)
err := unix.EpollCtl(e.fd, syscall.EPOLL_CTL_ADD, fd, &unix.EpollEvent{Events: unix.POLLIN | unix.POLLHUP, Fd: int32(fd)})
if err != nil {
return err
}
e.lock.Lock()
defer e.lock.Unlock()
e.connections[fd] = conn
if len(e.connections)%100 == 0 {
log.Printf("total number of connections: %v", len(e.connections))
}
return nil
}
func (e *epoll) Remove(conn net.Conn) error {
fd := socketFD(conn)
err := unix.EpollCtl(e.fd, syscall.EPOLL_CTL_DEL, fd, nil)
if err != nil {
return err
}
e.lock.Lock()
defer e.lock.Unlock()
delete(e.connections, fd)
if len(e.connections)%100 == 0 {
log.Printf("total number of connections: %v", len(e.connections))
}
return nil
}
func (e *epoll) Wait() ([]net.Conn, error) {
events := make([]unix.EpollEvent, 100)
n, err := unix.EpollWait(e.fd, events, 100)
if err != nil {
return nil, err
}
e.lock.RLock()
defer e.lock.RUnlock()
var connections []net.Conn
for i := 0; i < n; i++ {
conn := e.connections[int(events[i].Fd)]
connections = append(connections, conn)
}
return connections, nil
}
func socketFD(conn net.Conn) int {
//tls := reflect.TypeOf(conn.UnderlyingConn()) == reflect.TypeOf(&tls.Conn{})
// Extract the file descriptor associated with the connection
//connVal := reflect.Indirect(reflect.ValueOf(conn)).FieldByName("conn").Elem()
tcpConn := reflect.Indirect(reflect.ValueOf(conn)).FieldByName("conn")
//if tls {
// tcpConn = reflect.Indirect(tcpConn.Elem())
//}
fdVal := tcpConn.FieldByName("fd")
pfdVal := reflect.Indirect(fdVal).FieldByName("pfd")
return int(pfdVal.FieldByName("Sysfd").Int())
}